speechbrain.lobes.models.ResNet 模块
用于说话人确认的 ResNet PreActivated
- 作者
Mickael Rouvier 2022
摘要
类
ResNet 块的实现。 |
|
此类实现了在特征之上的余弦相似度计算。 |
|
ResNet 的实现 |
|
Squeeze-and-Excitation ResNet 块的实现。 |
|
Squeeze-and-Excitation 块的实现。 |
函数
kernel_size = 1 的二维卷积 |
|
kernel_size = 3 的二维卷积 |
参考
- speechbrain.lobes.models.ResNet.conv3x3(in_planes, out_planes, stride=1)[source]
kernel_size = 3 的二维卷积
- speechbrain.lobes.models.ResNet.conv1x1(in_planes, out_planes, stride=1)[source]
kernel_size = 1 的二维卷积
- class speechbrain.lobes.models.ResNet.SEBlock(channels, reduction=1, activation=<class 'torch.nn.modules.activation.ReLU'>)[source]
基类:
Module
Squeeze-and-Excitation 块的实现。
示例
>>> inp_tensor = torch.rand([1, 64, 80, 40]) >>> se_layer = SEBlock(64) >>> out_tensor = se_layer(inp_tensor) >>> out_tensor.shape torch.Size([1, 64, 80, 40])
- class speechbrain.lobes.models.ResNet.BasicBlock(in_channels, out_channels, stride=1, downsample=None, activation=<class 'torch.nn.modules.activation.ReLU'>)[source]
基类:
Module
ResNet 块的实现。
- 参数:
示例
>>> inp_tensor = torch.rand([1, 64, 80, 40]) >>> layer = BasicBlock(64, 64, stride=1) >>> out_tensor = layer(inp_tensor) >>> out_tensor.shape torch.Size([1, 64, 80, 40])
- class speechbrain.lobes.models.ResNet.SEBasicBlock(in_channels, out_channels, reduction=1, stride=1, downsample=None, activation=<class 'torch.nn.modules.activation.ReLU'>)[source]
基类:
Module
Squeeze-and-Excitation ResNet 块的实现。
- 参数:
示例
>>> inp_tensor = torch.rand([1, 64, 80, 40]) >>> layer = SEBasicBlock(64, 64, stride=1) >>> out_tensor = layer(inp_tensor) >>> out_tensor.shape torch.Size([1, 64, 80, 40])
- class speechbrain.lobes.models.ResNet.ResNet(input_size=80, device='cpu', activation=<class 'torch.nn.modules.activation.ReLU'>, channels=[128, 128, 256, 256], block_sizes=[3, 4, 6, 3], strides=[1, 2, 2, 2], lin_neurons=256)[source]
基类:
Module
ResNet 的实现
- 参数:
示例
>>> input_feats = torch.rand([2, 400, 80]) >>> compute_embedding = ResNet(lin_neurons=256) >>> outputs = compute_embedding(input_feats) >>> outputs.shape torch.Size([2, 256])
- class speechbrain.lobes.models.ResNet.Classifier(input_size, device='cpu', lin_blocks=0, lin_neurons=256, out_neurons=1211)[source]
基类:
Module
此类实现了在特征之上的余弦相似度计算。
- 参数:
示例
>>> classify = Classifier(input_size=2, lin_neurons=2, out_neurons=2) >>> outputs = torch.tensor([ [1., -1.], [-9., 1.], [0.9, 0.1], [0.1, 0.9] ]) >>> outputs = outputs.unsqueeze(1) >>> cos = classify(outputs) >>> (cos < -1.0).long().sum() tensor(0) >>> (cos > 1.0).long().sum() tensor(0)